Determinants Present in the Receptor Carboxy Tail Are Responsible for Differences in Subtype-Specific Coupling of β-Adrenergic Receptors to Phosphoinositide 3-Kinase

نویسندگان

  • Julie Simard
  • Matthieu Boucher
  • Rachel Massé
  • Terence E. Hébert
  • Guy Rousseau
چکیده

An agonist-occupied beta(2)-adrenergic receptor (beta(2)-AR) recruits G protein receptor kinase-2 (GRK2) which is recruited to the membrane. Thus, the physical proximity of activated beta(2)-AR and PI-3K allows the activation of the latter. In contrast, it has been observed that the beta(1)-AR is unable to activate the PI-3K/Akt pathway. We hypothesized that the difference might be due to molecular determinants present in the carboxy termini of the two beta-AR subtypes. Using transiently transfected HEK 293 cells expressing either beta(1)- or beta(2)-AR, we also observed that in presence of an agonist, beta(2)-AR, but not beta(1)-AR, is able to activate the PI-3K/Akt pathway. Switching the seventh transmembrane domain and the carboxy tail between the two receptors reverses this phenotype; that is, beta(1) x beta(2)-AR can activate the PI-3K/Akt pathway whereas beta(2) x beta(1)-AR cannot. Pretreatment with pertussis toxin abolished the activation of PI-3K by beta(2)- or beta(1) x beta(2)-AR stimulation. Ligand-mediated internalization of the beta(2)-AR induced by a 15-minute stimulation with agonist was abolished in the presence of a dominant negative of PI-3K or following pertussis toxin pretreatment. These results indicate that the subtype-specific differences in the coupling to PI-3K/Akt pathway are due to molecular determinants present in the carboxy tail of the receptor and further that beta(2)-AR activates PI-3K via a pertussis toxin-sensitive mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Adrenergic Receptors on Neural Excitability and Synaptic Plasticity: A Narrative Review

Adrenergic receptors have an important role in neural excitability and synaptic plasticity. Despite a lot of studies on these receptors, their exact role in brain disorders accompanied with hyperexcitability has not been determined. There are also controversies on their role in synaptic plasticity. In this review article, the important studies done in this regard have been reviewed to achieve a...

متن کامل

An Experimental Study on Spinal Cord µ-Opioid and α2-Adrenergic Receptors mRNA Expression Following Stress-Induced Hyperalgesia in Male Rats

Background: Intense stress can change pain perception and induce hyperalgesia; a phenomenon called stress-induced hyperalgesia (SIH). However, the neurobiological mechanism of this effect remains unclear. The present study aimed to investigate the effect of the spinal cord µ-opioid receptors (MOR) and α2-adrenergic receptors (α2-AR) on pain sensation in rats with SIH. Methods: Eighteen Sprague-...

متن کامل

Presence of prejunctional D2-dopaminoceptors and α2-adrenoceptors on the cholinergic nerve of the common bile duct of guinea pig

On most adrenergic and cholinergic nerve terminals, prejunctional α-adrenoceptors belonging to the α2-subtype have been identified. Activation of these receptors will decrease the release of norepinephrine. It has been reported that several isolated tissue preparations contain prejunctional dopamine receptors, the stimulation of which inhibits neurotransmission. It has remained uncertain whethe...

متن کامل

Peripheral and central effects of dexrnedetomidine, a specific alpha-2 adrenergic agonist, oil phasic and tonic pain

Recently, vast studies have been focused on the antinociceptive and anesthetic effects of α2 adrenergic receptors, using specific drugs such as medetomidine and dexmedetomidine. In the present study, we tried to assess the peripheral and central effects of dexmedetomidine in phasic and tonic pain, on rats, using tail flick and formalin tests. Dexmedetomidine, administered intraperitoneally (25,...

متن کامل

Adverse Effects on β‐Adrenergic Receptor Coupling: Ischemic Postconditioning Failed to Preserve Long‐Term Cardiac Function

BACKGROUND Ischemic preconditioning (IPC) and ischemic postconditioning (IPoC) are currently among the most efficient strategies protecting the heart against ischemia/reperfusion injury. However, the effect of IPC and IPoC on functional recovery following ischemia/reperfusion is less clear, particularly with regard to the specific receptor-mediated signaling of the postischemic heart. The curre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2009  شماره 

صفحات  -

تاریخ انتشار 2009